论文标题

因果关系:变异自动编码器的结构性因果分解

CausalVAE: Structured Causal Disentanglement in Variational Autoencoder

论文作者

Yang, Mengyue, Liu, Furui, Chen, Zhitang, Shen, Xinwei, Hao, Jianye, Wang, Jun

论文摘要

学习分离旨在寻找低维表示,该表示由观察数据的多个解释性和生成因素组成。变异自动编码器(VAE)的框架通常用于将独立因素与观测分解。但是,在实际情况下,具有语义的因素不一定是独立的。取而代之的是,可能存在基本的因果结构,从而使这些因素取决于这些因素。因此,我们提出了一个名为Causalvae的新的基于VAE的框架,其中包括一个因果层,将独立的外源性因子转化为因果关系中的因果关系,这些因子与数据中的因果相关概念相对应。我们进一步分析了该模型,表明从观测值中学到的拟议模型通过提供监督信号(例如特征标签),从一定程度上恢复了真正的模型。实验是在各种数据集上进行的,包括合成和真实的基准Celeba。结果表明,因果关系学到的因果表示是可以解释的,并且其因果关系作为定向的无环图(DAG),以良好的准确性鉴定出来。此外,我们证明了所提出的Causalvae模型能够通过因果因素的“操作”来生成反事实数据。

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree by providing supervision signals (e.g. feature labels). Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源