论文标题

被遮挡的禁止项目检测:X射线安全检查基准和去核心注意模块

Occluded Prohibited Items Detection: an X-ray Security Inspection Benchmark and De-occlusion Attention Module

论文作者

Wei, Yanlu, Tao, Renshuai, Wu, Zhangjie, Ma, Yuqing, Zhang, Libo, Liu, Xianglong

论文摘要

安全检查通常处理一件行李或手提箱,在该行李或手提箱中,物体彼此重叠,导致X射线图像中禁止的项目检测的性能不令人满意。在文献中,有罕见的研究和数据集涉及这个重要主题。在这项工作中,我们为安全检查的第一个高质量对象检测数据集贡献了concluded禁止的项目X射线(OPIXRAY)图像基准。 Opixray专注于广泛的禁止物品“ Cutter”,该项目由国际机场的专业检查员手动注释。测试集进一步分为三个遮挡水平,以更好地了解探测器的性能。此外,为了处理X射线图像检测中的遮挡,我们提出了De-Clusion注意模块(DOAM),这是一个可以轻松插入并因此促进最流行的检测器的插件模块。尽管X射线成像中有很大的阻塞,但物体的形状外观仍可以很好地保留,同时不同的材料在视觉上以不同的颜色和纹理出现。在这些观察结果的激励下,我们的DOAM同时利用了禁止项目的不同外观信息来生成注意力图,这有助于为通用探测器提供优化的特征图。我们在OpixRay数据集上全面评估了我们的模块,并证明我们的模块可以始终如一地提高最先进的检测方法的性能,例如SSD,FCOS等,并且明显优于几种广泛使用的注意力机制。特别是,DOAM的优势在遮挡水平较高的情况下更为重要,这表明了其在现实检查中的潜在应用。 OpixRay基准和我们的模型在https://github.com/opixray-author/opixray上发布。

Security inspection often deals with a piece of baggage or suitcase where objects are heavily overlapped with each other, resulting in an unsatisfactory performance for prohibited items detection in X-ray images. In the literature, there have been rare studies and datasets touching this important topic. In this work, we contribute the first high-quality object detection dataset for security inspection, named Occluded Prohibited Items X-ray (OPIXray) image benchmark. OPIXray focused on the widely-occurred prohibited item "cutter", annotated manually by professional inspectors from the international airport. The test set is further divided into three occlusion levels to better understand the performance of detectors. Furthermore, to deal with the occlusion in X-ray images detection, we propose the De-occlusion Attention Module (DOAM), a plug-and-play module that can be easily inserted into and thus promote most popular detectors. Despite the heavy occlusion in X-ray imaging, shape appearance of objects can be preserved well, and meanwhile different materials visually appear with different colors and textures. Motivated by these observations, our DOAM simultaneously leverages the different appearance information of the prohibited item to generate the attention map, which helps refine feature maps for the general detectors. We comprehensively evaluate our module on the OPIXray dataset, and demonstrate that our module can consistently improve the performance of the state-of-the-art detection methods such as SSD, FCOS, etc, and significantly outperforms several widely-used attention mechanisms. In particular, the advantages of DOAM are more significant in the scenarios with higher levels of occlusion, which demonstrates its potential application in real-world inspections. The OPIXray benchmark and our model are released at https://github.com/OPIXray-author/OPIXray.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源