论文标题

学习跳跃马尔可夫线性系统的各种期望最大化算法

A Variational Expectation-Maximisation Algorithm for Learning Jump Markov Linear Systems

论文作者

Balenzuela, Mark P., Wills, Adrian G., Renton, Christopher, Ninness, Brett

论文摘要

跳跃马尔可夫线性系统(JMLS)是一个有用的类,可用于建模在操作过程中表现出行为随机变化的过程。本文提出了一种使用预期最大化(EM)方法来学习跳跃马尔可夫线性系统参数的数值稳定方法。本文提供的解决方案是确定性算法,不是基于蒙特卡洛的技术。结果,模拟表明,与替代方法相比,可以在固定的计算时间内找到一组更可能的系统参数,这可以更好地解释系统的观察结果。

Jump Markov linear systems (JMLS) are a useful class which can be used to model processes which exhibit random changes in behavior during operation. This paper presents a numerically stable method for learning the parameters of jump Markov linear systems using the expectation-maximisation (EM) approach. The solution provided herein is a deterministic algorithm, and is not a Monte Carlo based technique. As a result, simulations show that when compared to alternative approaches, a more likely set of system parameters can be found within a fixed computation time, which better explain the observations of the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源