论文标题
Moire图像恢复使用多等级超视力网
Moire Image Restoration using Multi Level Hyper Vision Net
论文作者
论文摘要
图像中的摩尔图案是由图像传感器(彩色滤镜阵列)捕获的高频图案产生的,该图像传感器(彩色滤镜阵列)出现在示波器后。这些摩尔图案将出现在具有高频内容的场景的自然图像中。由于相机方向/定位的最小变化,Moire模式也可能有很大的变化。因此,Moire模式贬低了照片的质量。演示模式中的一个重要问题是,摩擦模式具有动态结构,具有不同的颜色和形式。这些挑战比许多其他图像恢复任务更加困难。受到演示挑战的启发,提出了多级超视网网,以消除Moire模式以提高图像的质量。作为关键方面,在该网络中,我们涉及残留的通道注意块,可用于从所有层中提取和自适应融合层次的特征。所提出的算法已使用NTIRE 2020挑战数据集进行了测试,因此分别达到了36.85和0.98峰值与信号噪声比(PSNR)和结构相似性(SSIM)指数。
A moire pattern in the images is resulting from high frequency patterns captured by the image sensor (colour filter array) that appear after demosaicing. These Moire patterns would appear in natural images of scenes with high frequency content. The Moire pattern can also vary intensely due to a minimal change in the camera direction/positioning. Thus the Moire pattern depreciates the quality of photographs. An important issue in demoireing pattern is that the Moireing patterns have dynamic structure with varying colors and forms. These challenges makes the demoireing more difficult than many other image restoration tasks. Inspired by these challenges in demoireing, a multilevel hyper vision net is proposed to remove the Moire pattern to improve the quality of the images. As a key aspect, in this network we involved residual channel attention block that can be used to extract and adaptively fuse hierarchical features from all the layers efficiently. The proposed algorithms has been tested with the NTIRE 2020 challenge dataset and thus achieved 36.85 and 0.98 Peak to Signal Noise Ratio (PSNR) and Structural Similarity (SSIM) Index respectively.