论文标题

Breg-Next:使用具有有限梯度的自适应残留网络的面部影响计算

BReG-NeXt: Facial Affect Computing Using Adaptive Residual Networks With Bounded Gradient

论文作者

Hasani, Behzad, Negi, Pooran Singh, Mahoor, Mohammad H.

论文摘要

本文介绍了Breg-Next,这是一种基于残差的网络体系结构,使用函数WTIH有界导数,而不是剩余单元中简单的快捷路径(又称身份映射),以自动识别基于影响的分类模型的面部表情。与Resnet相比,我们提出的自适应复杂映射导致较浅的网络,其训练参数数量较少,每秒浮点操作(拖船)。在旁路功能中添加可训练的参数进一步改善了拟合和训练网络,从而识别出微妙的面部表情,例如以更高的精度鄙视。我们对影响NIDT,FER2013和野生情感的充满挑战的内在数据库的影响的分类和维度模型进行了全面的实验。我们的实验结果表明,我们的自适应复合映射方法的表现优于原始重新NET,该重新系统由简单的身份映射以及其他用于面部表达识别(FER)的最新方法。两种影响模型都报告了各种指标,以提供对我们方法的全面评估。在分类模型中,Breg-Next-50只有310万个训练参数和15 mflops,分别在AffectNet和FER2013数据库上分别达到68.50%和71.53%的精度。在维度模型中,Breg-Next分别在Actionnet和野生数据库上分别达到0.2577和0.2882 RMSE值。

This paper introduces BReG-NeXt, a residual-based network architecture using a function wtih bounded derivative instead of a simple shortcut path (a.k.a. identity mapping) in the residual units for automatic recognition of facial expressions based on the categorical and dimensional models of affect. Compared to ResNet, our proposed adaptive complex mapping results in a shallower network with less numbers of training parameters and floating point operations per second (FLOPs). Adding trainable parameters to the bypass function further improves fitting and training the network and hence recognizing subtle facial expressions such as contempt with a higher accuracy. We conducted comprehensive experiments on the categorical and dimensional models of affect on the challenging in-the-wild databases of AffectNet, FER2013, and Affect-in-Wild. Our experimental results show that our adaptive complex mapping approach outperforms the original ResNet consisting of a simple identity mapping as well as other state-of-the-art methods for Facial Expression Recognition (FER). Various metrics are reported in both affect models to provide a comprehensive evaluation of our method. In the categorical model, BReG-NeXt-50 with only 3.1M training parameters and 15 MFLOPs, achieves 68.50% and 71.53% accuracy on AffectNet and FER2013 databases, respectively. In the dimensional model, BReG-NeXt achieves 0.2577 and 0.2882 RMSE value on AffectNet and Affect-in-Wild databases, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源