论文标题

用于双向耦合Euler-Lagrange模拟的离散绿色功能范例

The discrete Green's function paradigm for two-way coupled Euler-Lagrange simulation

论文作者

Horwitz, J. A. K., Iaccarino, G., Eaton, J. K., Mani, A.

论文摘要

我们概述了模拟颗粒流量的方法,从而分散和流体相是双向耦合的。将流体和颗粒动量耦合的阻力取决于粒子位置的未受干扰的流体速度,而后者的数量需要建模。我们证明,在低粒子雷诺数限制中,不受干扰的流体速度可能与离散的stokes方程的离散绿色函数完全相关。该方法通常是因为它可以扩展到可能与含粒子流量的其他部分微分方程,例如热能方程或麦克斯韦方程。在这项工作中,我们通过在两平面通道几何形状中以低粒子雷诺数的Navier-Stokes方程获得这些功能来证明离散绿色功能的方法。我们对平行于平面壁的重力下方沉降的点粒子在低和有限的粒子雷诺数上进行验证,用于不同的壁正常分离。在与其他点粒子方案相比,离散的绿色功能方法是低粒子雷诺数的最健壮的方法,在所有壁正态分离中都是准确的,并且在有限的雷诺数数字上是近壁区域中最准确的。我们讨论如何通过吸引Oseen样离散Green的功能来提高有限雷诺数的墙的准确性。最后,我们证明了离散的绿色功能方法可以对载有颗粒的湍流通道流的统计数据具有重要意义。

We outline a methodology for the simulation of particle-laden flows whereby the dispersed and fluid phases are two-way coupled. The drag force which couples fluid and particle momentum depends on the undisturbed fluid velocity at the particle location, and this latter quantity requires modelling. We demonstrate that the undisturbed fluid velocity, in the low particle Reynolds number limit, can be related exactly to the discrete Green's function of the discrete Stokes equations. The method is general in that it can be extended to other partial differential equations which may be associated with particle-laden flows, such as the thermal energy equation or Maxwell's equations. In this work, we demonstrate the method of discrete Green's functions by obtaining these functions for the Navier-Stokes equations at low particle Reynolds number in a two-plane channel geometry. We perform verification at low and finite particle Reynolds number for the case of a point-particle settling under gravity parallel to a plane wall, for different wall normal separations. In comparing to other point-particle schemes the discrete Green's function approach is the most robust at low particle Reynolds number, accurate at all wall-normal separations and is the most accurate in the near wall region at finite Reynolds number. We discuss how the accuracy away from the wall at finite Reynolds number could be improved by appealing to Oseen-like discrete Green's functions. Finally we demonstrate that the discrete Green's function approach can have important implications on statistics of particle-laden turbulent channel flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源