论文标题
带有欧几里得切线的度量空间中的Bourgain-Brezis-Mironescu方法
Bourgain-Brezis-Mironescu approach in metric spaces with Euclidean tangents
论文作者
论文摘要
在设置度量尺寸的设置中,满足双重状况以及$(1,p)$-Poincaré的不平等现象,我们证明了Bourgain-Brezis-Mironescu在Sobolev Space $ W^{1,P}(x,d,d,d,d,ν)$中的$ $ $ $ $的指标类似物。指向Gromov-Hausdorff Sense中的切线空间是欧几里得,固定尺寸$ n $。
In the setting of metric measure spaces satisfying the doubling condition and the $(1,p)$-Poincaré inequality, we prove a metric analogue of the Bourgain-Brezis-Mironescu formula for functions in the Sobolev space $W^{1,p}(X,d,ν)$, under the assumption that for $ν$-a.e. point the tangent space in the Gromov-Hausdorff sense is Euclidean with fixed dimension $N$.