论文标题
验证神经网络的并行化技术
Parallelization Techniques for Verifying Neural Networks
论文作者
论文摘要
受到最新成功的启发,我们研究了一组策略和启发式方法,旨在利用并行计算来提高神经网络验证的可扩展性。我们介绍了一种基于迭代方式分区验证问题并探索两种分区策略的算法,该算法分别通过分配输入空间或通过在神经元激活的阶段进行分割来起作用。我们还引入了一种高度可行的预处理算法,该算法使用神经元激活阶段简化了神经网络验证问题。广泛的实验评估表明,这些技术对航空域的现有基准和新基准测试的好处。使用大型基于云的平台的超级算法进行超级缩放算法的初步实验也显示出令人鼓舞的结果。
Inspired by recent successes with parallel optimization techniques for solving Boolean satisfiability, we investigate a set of strategies and heuristics that aim to leverage parallel computing to improve the scalability of neural network verification. We introduce an algorithm based on partitioning the verification problem in an iterative manner and explore two partitioning strategies, that work by partitioning the input space or by case splitting on the phases of the neuron activations, respectively. We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems. An extensive experimental evaluation shows the benefit of these techniques on both existing benchmarks and new benchmarks from the aviation domain. A preliminary experiment with ultra-scaling our algorithm using a large distributed cloud-based platform also shows promising results.