论文标题
对$ k $ -finite functor的反函子参数的依赖性
The dependence on parameters of the inverse functor to the $K$-finite functor
论文作者
论文摘要
对Casselman-Wallach(C-W)定理的解释是,$ k $ - 罚款函子是从有限生成的,可接受的,可接受的平滑fréchet模块中的类别的同构,对Harish-Chandra模块的类别中等增长的中等增长的平滑fréchet模块,用于$ k $ G $ G $ G $ commal compact a Maximal compact in Maxccct of Maxim in Maxcouck。该函数在参数上。我们的主要结果暗示着尸体依赖性意味着尸体依赖性。该作品使用了范德诺特(Van der Noort)的出色论文的结果。本文中开发的一个非凡的普遍哈里什 - 坎德拉模块家族也起着关键作用。
An interpretation of the Casselman-Wallach (C-W) Theorem is that the $K$-finite functor is an isomorphism of categories from the category of finitely generated, admissible smooth Fréchet modules of moderate growth to the category of Harish-Chandra modules for a real reductive group, $G$ (here $K$ is a maximal compact subgroup of G).In this paper we study the dependence of this functor on parameters. Our main result implies that holomorphic dependence implies holomorphic dependence. The work uses results from the excellent thesis of van der Noort. Also a remarkable family of Universal Harish-Chandra modules developed in this paper plays a key role.