论文标题
$ l^2 $-CHEEGERMüller定理与紧凑型歧管有关
An $L^2$-Cheeger Müller theorem on compact manifolds-with-boundary
论文作者
论文摘要
我们概括了一个Cheeger-müller型定理,用于在无限覆盖空间上的平坦,单一的捆绑包,该空间与巨型,由Burghelea,Friedlander和Kappeller Arxiv证明:DG-GA/9510010 [Math.dg]。通过Brüning,MA和Zhang采用最近的异常结果,我们证明了一个类似的一般扁平捆绑包,仅需要对边界具有单模型限制。
We generalize a Cheeger-Müller type theorem for flat, unitary bundles on infinite covering spaces over manifolds-with-boundary, proven by Burghelea, Friedlander and Kappeller arXiv:dg-ga/9510010 [math.DG]. Employing recent anomaly results by Brüning, Ma and Zhang, we prove an analogous statement for a general flat bundle that is only required to have a unimodular restriction to the boundary.