论文标题
多项式射击磁静脉问题的后验误差估计器
A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems
论文作者
论文摘要
我们提供了基于平衡的后验误差估计器,用于磁静态问题的Nédélec元素离散。通过将梯度校正添加到[J. Gedicke,S。Geevers和I. Perugia。对于磁静态问题的任意阶nédélec元素的后验误差估计器的平衡。科学计算杂志,83:1-23,2020]。 This new estimator is proven to be reliable, with reliability constant 1, and efficient, with an efficiency constant that is independent of the polynomial degree of the approximation.在三维测试问题的一系列数值实验中证明了这些特性。
We present an equilibration-based a posteriori error estimator for Nédélec element discretizations of the magnetostatic problem. The estimator is obtained by adding a gradient correction to the estimator for Nédélec elements of arbitrary degree presented in [J. Gedicke, S. Geevers, and I. Perugia. An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems. Journal of Scientific Computing, 83:1-23, 2020]. This new estimator is proven to be reliable, with reliability constant 1, and efficient, with an efficiency constant that is independent of the polynomial degree of the approximation. These properties are demonstrated in a series of numerical experiments on three-dimensional test problems.