论文标题
部分可观测时空混沌系统的无模型预测
Quarkyonic Matter Equation of State in Beta-Equilibrium
论文作者
论文摘要
夸克物质可能是由于混合恒星的核心中的雄性夸克过渡而出现的。 Quarkyonic物质是一种方法,其中夸克和核子在交叉过渡中以准粒子的形式出现,并提供了有关夸克物质的早期思想的明确实现(例如,MIT袋模型)。麦克雷伦(McLerran)和雷迪(Reddy)最近采用了此描述,用一种方法,具有一种美德,即声音速度在中子夸克过渡时迅速上升,以便满足中子星星最大质量的观察约束,$ \ gtrsim_2m_ \ odot $ $ sime a radius and a radius a radius a radius a $ 1.4mm_ $ \ odot($ odot)$ star(4mm star(4mm star)(4米(ododoot)(4米 /星(ODOOD)(4米 /星(ODOOD)(4米 /星)。 13.5 $公里)。涉及一阶转变的传统模型导致较柔和的压力能密度关系,这些密度关系难以满足这些约束,除了参数非常狭窄。我们提出了涉及质子和卵子的夸克物质变化,可以将能量明确地最小化,以达到化学和β平衡,这在无还清的配方中无法完成。 Quarkyonic Stellar模型能够满足观察到的质量和半径约束,并具有广泛的模型参数,从而避免了常规混合星模型的强制性微调,包括要求过渡密度非常接近核饱和度密度。我们的配方符合核对称能和纯中子物质的实验和理论特性,并且包含三个自由参数。这使其成为研究高密度物质的理想工具,它是分段多质或光谱分解方法的有效替代品。
Quark matter may appear due to a hadronic-quark transition in the core of a hybrid star. Quarkyonic matter is an approach in which both quarks and nucleons appear as quasi-particles in a crossover transition, and provides an explicit realization of early ideas concerning quark matter (e.g., the MIT bag model). This description has recently been employed by McLerran and Reddy to model chargeless (pure neutron) matter with an approach that has the virtue that the speed of sound rises quickly at a neutron-quark transition so as to satisfy observational constraints on the neutron star maximum mass ($\gtrsim2M_\odot$) and the radius of a $1.4M_\odot$ star ($R_{1.4}\lesssim 13.5$ km). Traditional models involving first-order transitions result in softer pressure-energy density relations that have difficulty satisfying these constraints except with very narrow choices of parameters. We propose a variation of quarkyonic matter involving protons and leptons whose energy can be explicitly minimized to achieve both chemical and beta equilibrium, which cannot be done in the chargeless formulation. Quarkyonic stellar models are able to satisfy observed mass and radius constraints with a wide range of model parameters, avoiding the obligatory fine-tuning of conventional hybrid star models, including requiring the transition density to be very close to the nuclear saturation density. Our formulation fits experimental and theoretical properties of the nuclear symmetry energy and pure neutron matter, and contains as few as three free parameters. This makes it an ideal tool for the study of high-density matter that is an efficient alternative to piecewise polytrope or spectral decomposition methods.