论文标题

三连接的超图和两部分图中的最长循环

Longest cycles in 3-connected hypergraphs and bipartite graphs

论文作者

Kostochka, Alexandr, Lavrov, Mikhail, Luo, Ruth, Zirlin, Dara

论文摘要

用超图的语言,我们的主要结果是狄拉克类型的绑定:我们证明,每$ 3 $连接的hypergraph $ h $都带有$δ(h)\ geq \ geq \ max \ max \ {| v(h)|,\ frac {| e(h)| e(h) 这是尖锐的,并完善了杰克逊(Jackson)从1981年开始的猜想(用两分图的语言)。我们的证明是用两分图的语言,因为每个超图的发生率图是两部分。

In the language of hypergraphs, our main result is a Dirac-type bound: we prove that every $3$-connected hypergraph $H$ with $ δ(H)\geq \max\{|V(H)|, \frac{|E(H)|+10}{4}\}$ has a hamiltonian Berge cycle. This is sharp and refines a conjecture by Jackson from 1981 (in the language of bipartite graphs). Our proofs are in the language of bipartite graphs, since the incidence graph of each hypergraph is bipartite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源