论文标题
三连接的超图和两部分图中的最长循环
Longest cycles in 3-connected hypergraphs and bipartite graphs
论文作者
论文摘要
用超图的语言,我们的主要结果是狄拉克类型的绑定:我们证明,每$ 3 $连接的hypergraph $ h $都带有$δ(h)\ geq \ geq \ max \ max \ {| v(h)|,\ frac {| e(h)| e(h) 这是尖锐的,并完善了杰克逊(Jackson)从1981年开始的猜想(用两分图的语言)。我们的证明是用两分图的语言,因为每个超图的发生率图是两部分。
In the language of hypergraphs, our main result is a Dirac-type bound: we prove that every $3$-connected hypergraph $H$ with $ δ(H)\geq \max\{|V(H)|, \frac{|E(H)|+10}{4}\}$ has a hamiltonian Berge cycle. This is sharp and refines a conjecture by Jackson from 1981 (in the language of bipartite graphs). Our proofs are in the language of bipartite graphs, since the incidence graph of each hypergraph is bipartite.