论文标题
超密集网络中基于学习的联合用户协会和资源分配
Learning-Based Joint User-AP Association and Resource Allocation in Ultra Dense Network
论文作者
论文摘要
随着毫米波在无线通信网络中的优势,可以进一步降低覆盖范围和地点间距离,超密集网络(UDN)成为未来网络的主流。 UDN面临的主要挑战是严重的现场干扰,需要由联合用户协会和资源分配方法仔细解决。在本文中,我们提出了一种基于多代理Q学习的方法,以共同优化UDN中的用户关联和资源分配。深入Q网络用于确保所提出方法的收敛性。模拟结果揭示了所提出的方法的有效性,并评估了不同模拟参数下的不同性能。
With the advantages of Millimeter wave in wireless communication network, the coverage radius and inter-site distance can be further reduced, the ultra dense network (UDN) becomes the mainstream of future networks. The main challenge faced by UDN is the serious inter-site interference, which needs to be carefully addressed by joint user association and resource allocation methods. In this paper, we propose a multi-agent Q-learning based method to jointly optimize the user association and resource allocation in UDN. The deep Q-network is applied to guarantee the convergence of the proposed method. Simulation results reveal the effectiveness of the proposed method and different performances under different simulation parameters are evaluated.