论文标题

超密集网络中基于学习的联合用户协会和资源分配

Learning-Based Joint User-AP Association and Resource Allocation in Ultra Dense Network

论文作者

Cheng, Zhipeng, LiWangy, Minghui, Chen, Ning, Lin, Hongyue, Gao, Zhibin, Huang, Lianfen

论文摘要

随着毫米波在无线通信网络中的优势,可以进一步降低覆盖范围和地点间距离,超密集网络(UDN)成为未来网络的主流。 UDN面临的主要挑战是严重的现场干扰,需要由联合用户协会和资源分配方法仔细解决。在本文中,我们提出了一种基于多代理Q学习的方法,以共同优化UDN中的用户关联和资源分配。深入Q网络用于确保所提出方法的收敛性。模拟结果揭示了所提出的方法的有效性,并评估了不同模拟参数下的不同性能。

With the advantages of Millimeter wave in wireless communication network, the coverage radius and inter-site distance can be further reduced, the ultra dense network (UDN) becomes the mainstream of future networks. The main challenge faced by UDN is the serious inter-site interference, which needs to be carefully addressed by joint user association and resource allocation methods. In this paper, we propose a multi-agent Q-learning based method to jointly optimize the user association and resource allocation in UDN. The deep Q-network is applied to guarantee the convergence of the proposed method. Simulation results reveal the effectiveness of the proposed method and different performances under different simulation parameters are evaluated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源