论文标题
Thermosim:基于深度学习的框架,用于建模和模拟云计算环境的热感知资源管理
ThermoSim: Deep Learning based Framework for Modeling and Simulation of Thermal-aware Resource Management for Cloud Computing Environments
论文作者
论文摘要
当前的云计算框架容纳了数百万个物理服务器,这些服务器以不同的虚拟机(VM)的形式利用云计算资源。云数据中心(CDC)基础架构需要大量的能源来提供大规模的计算服务。计算节点会产生大量的热量,需要冷却单元以消除这种热量的效果。因此,对于服务器和冷却单元,CDC的总体能耗大大增加。但是,当前的工作负载分配策略没有考虑到对温度的影响,模拟CDC的热行为是一项挑战。需要一个热感知框架来模拟和建模节点的行为并测量可能受其温度影响的重要性能参数。在本文中,我们提出了一个轻巧的框架,热框,用于对云计算环境的热感知资源管理进行建模和模拟。这项工作为CDC提供了一个经常性神经网络的深度学习温度预测变量,Thermosim用于在受约束的云环境中用于轻质资源管理。 Thermosim扩展了Cloudsim工具包,有助于分析各种关键参数的性能,例如能源消耗,SLA违规率,VM迁移数量和云资源管理过程中的温度,以执行工作负载。此外,使用拟议的热框框架对不同的能源感知和热感知资源管理技术进行了测试,以便在现有框架中对其进行验证。实验结果表明,在能源消耗,成本,时间,记忆使用情况和预测准确性方面,所提出的框架能够对CDC的热行为进行建模和模拟的热行为进行建模和模拟。
Current cloud computing frameworks host millions of physical servers that utilize cloud computing resources in the form of different virtual machines (VM). Cloud Data Center (CDC) infrastructures require significant amounts of energy to deliver large scale computational services. Computing nodes generate large volumes of heat, requiring cooling units in turn to eliminate the effect of this heat. Thus, the overall energy consumption of the CDC increases tremendously for servers as well as for cooling units. However, current workload allocation policies do not take into account the effect on temperature and it is challenging to simulate the thermal behavior of CDCs. There is a need for a thermal-aware framework to simulate and model the behavior of nodes and measure the important performance parameters which can be affected by its temperature. In this paper, we propose a lightweight framework, ThermoSim, for modeling and simulation of thermal-aware resource management for cloud computing environments. This work presents a Recurrent Neural Network based deep learning temperature predictor for CDCs which is utilized by ThermoSim for lightweight resource management in constrained cloud environments. ThermoSim extends the CloudSim toolkit helping to analyze the performance of various key parameters such as energy consumption, SLA violation rate, number of VM migrations and temperature during the management of cloud resources for execution of workloads. Further, different energy-aware and thermal-aware resource management techniques are tested using the proposed ThermoSim framework in order to validate it against the existing framework. The experimental results demonstrate the proposed framework is capable of modeling and simulating the thermal behavior of a CDC and the ThermoSim framework is better than Thas in terms of energy consumption, cost, time, memory usage & prediction accuracy.