论文标题

基于T-Matrix方法的双周期,分层结构的有效仿真

Efficient simulation of bi-periodic, layered structures based on the T-matrix method

论文作者

Beutel, Dominik, Groner, Achim, Rockstuhl, Carsten, Fernandez-Corbaton, Ivan

论文摘要

预测单个散点器宏观布置的光学响应是一个计算挑战,因为该问题涉及多个数量级的长度尺度。我们提出了一种全波光学方法,可以高效地计算出在双周期阵列中排列的物体上的光的散射。可以堆叠多个阵列或同质薄膜,以在第三维中构建整个多复合材料。每个数组中单个对象的散射特性由T-Matrix形式主义描述。因此,任意形状的对象甚至分子都可以是阵列的基本组成部分。将单个散点器的t矩阵作为出发点,可以从其成分的散射特性中解释散装物质的光学特性。我们使用具有良好定义的螺旋性的麦克斯韦方程的解决方案。因此,手性媒体特别容易作为散射器或嵌入媒体的材料。我们通过详尽的参数研究来说明算法的效率,该研究是针对高螺旋性保存的圆柱体制成的太阳能电池的抗反射涂层的。该示例显示了有关有限元计算的速度约为500。第二个例子专门利用了使用螺旋模式来研究手性材料中圆形二分法信号的增强。

Predicting the optical response of macroscopic arrangements of individual scatterers is a computational challenge, as the problem involves length scales across multiple orders of magnitude. We present a full-wave optical method to highly efficiently compute the scattering of light at objects that are arranged in bi-periodic arrays. Multiple arrays or homogeneous thin-films can be stacked to build up an entire multicomposite material in the third dimension. The scattering properties of the individual objects in each array are described by the T-matrix formalism. Therefore, arbitrarily shaped objects and even molecules can be the basic constituent of the arrays. Taking the T-matrix of the individual scatterer as the point of departure allows to explain the optical properties of the bulk material from the scattering properties of its constituents. We use solutions of Maxwell's equations with well defined helicity. Therefore, chiral media are particularly easy to consider as materials for both scatterers or embedding media. We exemplify the efficiency of the algorithm with an exhaustive parametric study of anti-reflective coatings for solar cells made from cylinders with a high degree of helicity preservation. The example shows a speed-up of about 500 with respect to finite-element computations. A second example specifically exploits the use helicity modes to investigate the enhancement of the circular dichroism signal in a chiral material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源