论文标题

针对实时放射学图像的机器学习管道的DICOM框架

A DICOM Framework for Machine Learning Pipelines against Real-Time Radiology Images

论文作者

Kathiravelu, Pradeeban, Sharma, Puneet, Sharma, Ashish, Banerjee, Imon, Trivedi, Hari, Purkayastha, Saptarshi, Sinha, Priyanshu, Cadrin-Chenevert, Alexandre, Safdar, Nabile, Gichoya, Judy Wawira

论文摘要

由于临床环境中的计算资源有限以及缺乏有效的数据传输功能,无法实时执行机器学习(ML)管道在放射学图像上实时执行。我们提出了Niffler,这是一个综合框架,可以通过有效查询和检索医院的图片归档和通信系统(PAC)来在研究集群中执行ML管道。 Niffler使用医学(DICOM)协议中的数字成像和通信来获取和存储成像数据,并提供元数据提取功能和应用程序编程接口(API)以在图像上应用过滤器。 Niffler进一步以取消确定的方式使ML管道的结果分享。尼夫勒(Niffler)的运行稳定超过19个月,并支持该部门的几个研究项目。在本文中,我们介绍其体系结构及其三种用例:从图像实时从图像,扫描仪利用率识别和扫描仪时钟校准的下腔静脉(IVC)滤波器检测。对Niffler原型的评估突出了其实时和回顾性促进图像和元数据上ML管道方面的可行性和效率。

Executing machine learning (ML) pipelines in real-time on radiology images is hard due to the limited computing resources in clinical environments and the lack of efficient data transfer capabilities to run them on research clusters. We propose Niffler, an integrated framework that enables the execution of ML pipelines at research clusters by efficiently querying and retrieving radiology images from the Picture Archiving and Communication Systems (PACS) of the hospitals. Niffler uses the Digital Imaging and Communications in Medicine (DICOM) protocol to fetch and store imaging data and provides metadata extraction capabilities and Application programming interfaces (APIs) to apply filters on the images. Niffler further enables the sharing of the outcomes from the ML pipelines in a de-identified manner. Niffler has been running stable for more than 19 months and has supported several research projects at the department. In this paper, we present its architecture and three of its use cases: an inferior vena cava (IVC) filter detection from the images in real-time, identification of scanner utilization, and scanner clock calibration. Evaluations on the Niffler prototype highlight its feasibility and efficiency in facilitating the ML pipelines on the images and metadata in real-time and retrospectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源