论文标题
三维$ \ mathcal {n} = 2 $鱼网理论中的循环操作员
Loop Operators in Three-Dimensional $\mathcal{N}=2$ Fishnet Theories
论文作者
论文摘要
在这项工作中,我们详细研究了三维$ {\ mathcal n} = 2 $渔网理论的线路和循环操作员。我们构建了至少是经典半BP的直线和圆形环路操作员。我们以框架$ -1 $的形式开发了一种新的正则化计划,适用于一般超级神秘的理论中的费米子BPS循环的研究。我们根据此方案初始化了圆形BPS循环操作员真空期望值的扰动计算。我们还构建了垂直的线路运算符,并计算这些垂us的线路运算符的真空期望值最高两层。我们发现,如果我们抛开普通电位在$ 1/ε$扩展中具有双极的事实,则普遍尖缘的异常尺寸会消失。
In this work, we study the line and loop operators in three-dimensional ${\mathcal N}=2$ fishnet theories in detail. We construct the straight line and circular loop operators which are at least classically half-BPS. We develop a new regularization scheme at frame $-1$ which is suitable for the study of the fermionic BPS loops in general super-Chern-Simons-matter theories. We initialize the perturbative computation for the vacuum expectation values of the circular BPS loop operators based on this scheme. We construct the cusped line operators as well, and compute the vacuum expectation values of these cusped line operators up to two-loop order. We find that the universal cusp anomalous dimension vanishes, if we put aside the fact that the generalized potential has a double pole in the $1/ε$ expansion.