论文标题

通过跳闸和矩形矩阵乘法的集中,平行和分布的多源最短路径

Centralized, Parallel, and Distributed Multi-Source Shortest Paths via Hopsets and Rectangular Matrix Multiplication

论文作者

Elkin, Michael, Neiman, Ofer

论文摘要

考虑一个无方向的加权图$ g =(v,e,w)$。我们研究计算$(1+ε)$的问题 - $ s \ times v $的近似最短路径,对于子集$ s \ subseteq v $ $ | s | = n^r $来源,对于$ 0 <r \ le 1 $。我们在整个参数$ r $的范围内,在经典的集中式和平行(PRAM)计算模型中,在整个参数$ r $的范围内都为此问题设计了一个显着改进的算法,并且在分布式(拥挤的集团)模型中均以$ r $ $ r $的范围。具体而言,我们针对此问题的集中算法需要时间$ \ tilde {o}(| e | \ cdot n^{o(1)} + n^{ω(r)})$,其中$ n^{ω(ω(r)} $是乘以乘以a $ n^r \ n^r \ time n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n y $ n $所需的时间。我们的婴儿车算法具有polygarithmic Time $(\ log n)^{o(1/ρ)} $,其工作复杂性为$ \ tilde {o}(| e | e | \ cdot n^ρ+ n^ρ+ n^{ω(R)}(ω(r)})$ 特别是,对于$ r \ le 0.313 \ ldots $,我们的集中式算法计算$ s \ times v $ $(1 +ε)$ - $ n^{2 + o(1)} $ time的近似最短路径。对于任何任意的小常数$ρ> 0 $,我们的PRAM POLYOGAROGAROGARITHMICTIME算法具有工作复杂度$ O(| e | \ cdot n^ρ+ n^{2+ o(1)})$。以前现有的解决方案需要$ O(| e | \ cdot | s |)$的集中时间/并行工作,或提供弱近似保证。 在拥挤的集团模型中,我们的算法在$ | s |中解决了polyogarithmic的问题。 = n^r $源,对于$ r \ le 0.655 $,而以前的最先进算法仅对$ r \ le 1/2 $这样做。此外,它改善了所有$ r> 1/2 $的先前界限。对于未加权图,运行时间将进一步提高到$ poly(\ log \ log n)$。

Consider an undirected weighted graph $G = (V,E,w)$. We study the problem of computing $(1+ε)$-approximate shortest paths for $S \times V$, for a subset $S \subseteq V$ of $|S| = n^r$ sources, for some $0 < r \le 1$. We devise a significantly improved algorithm for this problem in the entire range of parameter $r$, in both the classical centralized and the parallel (PRAM) models of computation, and in a wide range of $r$ in the distributed (Congested Clique) model. Specifically, our centralized algorithm for this problem requires time $\tilde{O}(|E| \cdot n^{o(1)} + n^{ω(r)})$, where $n^{ω(r)}$ is the time required to multiply an $n^r \times n$ matrix by an $n \times n$ one. Our PRAM algorithm has polylogarithmic time $(\log n)^{O(1/ρ)}$, and its work complexity is $\tilde{O}(|E| \cdot n^ρ+ n^{ω(r)})$, for any arbitrarily small constant $ρ>0$. In particular, for $r \le 0.313\ldots$, our centralized algorithm computes $S \times V$ $(1+ε)$-approximate shortest paths in $n^{2 + o(1)}$ time. Our PRAM polylogarithmic-time algorithm has work complexity $O(|E| \cdot n^ρ+ n^{2+o(1)})$, for any arbitrarily small constant $ρ>0$. Previously existing solutions either require centralized time/parallel work of $O(|E| \cdot |S|)$ or provide much weaker approximation guarantees. In the Congested Clique model, our algorithm solves the problem in polylogarithmic time for $|S| = n^r$ sources, for $r \le 0.655$, while previous state-of-the-art algorithms did so only for $r \le 1/2$. Moreover, it improves previous bounds for all $r > 1/2$. For unweighted graphs, the running time is improved further to $poly(\log\log n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源