论文标题

具有手指静脉识别的生理特征的当地描述符

A Local Descriptor with Physiological Characteristic for Finger Vein Recognition

论文作者

Zhang, Liping, Li, Weijun, Ning, Xin

论文摘要

局部特征描述符在手指静脉识别中表现出极大的优势,因为它们的稳定性和稳健性与图像的局部变化。但是,其中大多数是使用不考虑手指静脉特异性特征的通用描述符。在这项工作中,我们提出了一个基于手指特征描述源的手指静脉模式的生理特征,即指定的生理Gabor反应的直方图(HOPGR),以识别手指静脉。首先,手指静脉图案的定向特征是以无监督的方式获得的。然后,根据先前的信息来设置生理Gabor滤清器库,以提取生理反应和方向。最后,为了使特征具有针对图像的局部变化的鲁棒性,通过将图像分为非重叠的单元格和重叠块来生成直方图作为输出生成。在几个数据库上的广泛实验结果清楚地表明,所提出的方法的表现优于大多数当前最新的手指静脉识别方法。

Local feature descriptors exhibit great superiority in finger vein recognition due to their stability and robustness against local changes in images. However, most of these are methods use general-purpose descriptors that do not consider finger vein-specific features. In this work, we propose a finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns, i.e., histogram of oriented physiological Gabor responses (HOPGR), for finger vein recognition. First, prior of directional characteristic of finger vein patterns is obtained in an unsupervised manner. Then the physiological Gabor filter banks are set up based on the prior information to extract the physiological responses and orientation. Finally, to make feature has robustness against local changes in images, histogram is generated as output by dividing the image into non-overlapping cells and overlapping blocks. Extensive experimental results on several databases clearly demonstrate that the proposed method outperforms most current state-of-the-art finger vein recognition methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源