论文标题
立方cu $ _ {12} $ sb $ _ {4} $ s $ _ {13} $ tetrahedrites的类似玻璃晶格的晶格热传输的微观机制
Microscopic Mechanisms of Glass-Like Lattice Thermal Transport in Cubic Cu$_{12}$Sb$_{4}$S$_{13}$ Tetrahedrites
论文作者
论文摘要
基于立方四面体(Cu $ _ {12} $ SB $ _ {4} $ S $ _ {13} $)的材料是具有不寻常的热和电气传输属性的有用的热电学,例如非常低和几乎与温度独立的晶格导热率($κ_{$κ{l} $)。我们解释了cu $ _ {12} $ sb $ _ {4} $ s $ _ {4} $ s $ _ {13} $的微观来源,通过将非谐波处理到四分之一的词素能量和谐音散射率。我们表明,与实验数据一致,与三角协调的Cu原子相关的强烈不稳定的声子模式在大约$ 100 $ k的高于$ 100 $ k的高于$ 100 $左右的情况下稳定下来,并继续随温度升高而坚固。该温度引起的硬化作用通过减少三个子过程的可用相位空间来减少携带声模式的散射,从而平衡传统的$ \ propto t $ t $增加散射,并产生几乎与温度独立的$κ_ {l} $。此外,我们发现,非常强大的声子扩大导致常规声子加拿大模型的定性崩溃,并修改了从类似粒子的声子波数据包传播的主要热传输机制到由热液操作员以抗浓度术语描述的不一致的隧道,这些隧道通常是玻璃杯和无序晶体中典型流行的。我们的工作为对具有强大的非谐度的复杂晶体中的玻璃状导热率更深入地理解铺平了道路。
Materials based on cubic tetrahedrites (Cu$_{12}$Sb$_{4}$S$_{13}$) are useful thermoelectrics with unusual thermal and electrical transport properties, such as very low and nearly temperature-independent lattice thermal conductivity ($κ_{L}$). We explain the microscopic origin of the glass-like $κ_{L}$ in Cu$_{12}$Sb$_{4}$S$_{13}$ by explicitly treating anharmonicity up to quartic terms for both phonon energies and phonon scattering rates. We show that the strongly unstable phonon modes associated with trigonally coordinated Cu atoms are anharmonically stabilized above approximately $100$ K and continue hardening with increasing temperature, in accord with experimental data. This temperature induced hardening effect reduces scattering of heat carrying acoustic modes by reducing the available phase space for three-phonon processes, thereby balancing the conventional $\propto T$ increase in scattering due to phonon population and yielding nearly temperature-independent $κ_{L}$. Furthermore, we find that very strong phonon broadening lead to a qualitative breakdown of the conventional phonon-gas model and modify the dominant heat transport mechanism from the particle-like phonon wave packet propagation to incoherent tunneling described by off-diagonal terms in the heat-flux operator, which are typically prevailing in glasses and disordered crystals. Our work paves the way to a deeper understanding of glass-like thermal conductivity in complex crystals with strong anharmonicity.