论文标题

非交流性超曲面的狄拉克操作员

Dirac operators on noncommutative hypersurfaces

论文作者

Nguyen, Hans, Schenkel, Alexander

论文摘要

本文研究了非交通性riemannian(旋转)几何形状的模块理论方法中非交通性超曲面的几何结构。开发并应用了一种从非交通嵌入空间到非交通性超表面的差异,riemannian和旋转结构的结构。通过研究序列$ \ mathbb {t}^{2}_θ\ hookrightarrow \ mathbb {s}^{3}_θ\ hookrightArrow \ mathBb {r}^{4}_θ$非commutative hypersurface的非含量。

This paper studies geometric structures on noncommutative hypersurfaces within a module-theoretic approach to noncommutative Riemannian (spin) geometry. A construction to induce differential, Riemannian and spinorial structures from a noncommutative embedding space to a noncommutative hypersurface is developed and applied to obtain noncommutative hypersurface Dirac operators. The general construction is illustrated by studying the sequence $\mathbb{T}^{2}_θ \hookrightarrow \mathbb{S}^{3}_θ \hookrightarrow \mathbb{R}^{4}_θ$ of noncommutative hypersurface embeddings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源