论文标题

多模式AI的偏见:测试公平自动招聘

Bias in Multimodal AI: Testbed for Fair Automatic Recruitment

论文作者

Peña, Alejandro, Serna, Ignacio, Morales, Aythami, Fierrez, Julian

论文摘要

如今,社会中决策算法的存在正在迅速增加,而对其透明度的担忧以及这些算法成为新的歧视来源的可能性正在引起。实际上,已经证明许多相关的自动化系统可以根据敏感信息做出决策或区分某些社会群体(例如,某些人识别的某些生物识别系统)。为了研究目前基于信息来源的当前多模式算法如何受到数据中敏感元素和内部偏见的影响,我们提出了一个虚构的自动招聘测试台式:FaircvTest:FaircvTest。我们使用一组有意识地以性别和种族偏见得分的多模式合成轮廓来训练自动招聘算法。 FaircvTest显示了这种招聘工具背后的人工智能(AI)从非结构化数据中提取敏感信息的能力,并以不良(不公平的)方式将其结合到数据偏见。最后,我们介绍了最近开发的技术清单,这些技术能够从深度学习体系结构的决策过程中删除敏感信息。我们已经使用了这些算法之一(敏定源)来实验歧视感知学习,以消除我们的多模式AI框架中的敏感信息。我们的方法和结果表明了如何总体上生成更公平的基于AI的工具,特别是更公平的自动招聘系统。

The presence of decision-making algorithms in society is rapidly increasing nowadays, while concerns about their transparency and the possibility of these algorithms becoming new sources of discrimination are arising. In fact, many relevant automated systems have been shown to make decisions based on sensitive information or discriminate certain social groups (e.g. certain biometric systems for person recognition). With the aim of studying how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data, we propose a fictitious automated recruitment testbed: FairCVtest. We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases. FairCVtest shows the capacity of the Artificial Intelligence (AI) behind such recruitment tool to extract sensitive information from unstructured data, and exploit it in combination to data biases in undesirable (unfair) ways. Finally, we present a list of recent works developing techniques capable of removing sensitive information from the decision-making process of deep learning architectures. We have used one of these algorithms (SensitiveNets) to experiment discrimination-aware learning for the elimination of sensitive information in our multimodal AI framework. Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源