论文标题
节能和延迟意识到的车辆边缘云
Energy Efficient and Delay Aware Vehicular Edge Cloud
论文作者
论文摘要
车辆边缘云(VECS)是一种新的分布式处理范式,可利用车辆加工能力的革命,以提供节能服务和改进的QoS。在本文中,我们通过开发联合优化混合整数线性编程(MILP)模型来最大程度地减少功耗,传播延迟和排队延迟,从而解决了在云消毒-VEC体系结构中处理分配的问题。结果表明,尽管VEC处理可以减少功耗和传播延迟,但由于车辆和数据源节点之间的数据速率连通性较低,VEC处理可以增加排队延迟。
Vehicular Edge Clouds (VECs) is a new distributed processing paradigm that exploits the revolution in the processing capabilities of vehicles to offer energy efficient services and improved QoS. In this paper we tackle the problem of processing allocation in a cloud-fog-VEC architecture by developing a joint optimization Mixed Integer Linear Programming (MILP) model to minimize power consumption, propagation delay, and queuing delay. The results show that while VEC processing can reduce the power consumption and propagation delay, VEC processing can increase the queuing delay because of the low data rate connectivity between the vehicles and the data source nodes.