论文标题
多模式遥感图像中无监督更改检测的代码一致的自动编码器
Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images
论文作者
论文摘要
带有卷积自动编码器的图像翻译最近已被用作在Bitemalite卫星图像中进行多模式变化检测的方法。一个主要的挑战是通过减少更改像素对翻译功能的学习的贡献来对齐代码空间。许多现有方法通过利用变更领域的监督信息来训练网络,但是并非总是可用。我们建议在输入处提取由域特异性亲和力矩阵捕获的关系像素信息,并使用它来执行代码空间的一致性并减少变更像素对学习目标的影响。更改先验是从跨域可比的像素对亲和力的无监督方式得出的。为了实现代码空间对齐,我们强制执行在输入域中具有相似亲和力关系的像素也应在代码空间中关联。我们证明了该过程与周期一致性结合使用的实用性。将所提出的方法与最先进的深度学习算法进行了比较。在四个真实数据集上进行的实验显示了我们方法论的有效性。
Image translation with convolutional autoencoders has recently been used as an approach to multimodal change detection in bitemporal satellite images. A main challenge is the alignment of the code spaces by reducing the contribution of change pixels to the learning of the translation function. Many existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. We propose to extract relational pixel information captured by domain-specific affinity matrices at the input and use this to enforce alignment of the code spaces and reduce the impact of change pixels on the learning objective. A change prior is derived in an unsupervised fashion from pixel pair affinities that are comparable across domains. To achieve code space alignment we enforce that pixel with similar affinity relations in the input domains should be correlated also in code space. We demonstrate the utility of this procedure in combination with cycle consistency. The proposed approach are compared with state-of-the-art deep learning algorithms. Experiments conducted on four real datasets show the effectiveness of our methodology.