论文标题

实时差异流体分析和共同研究的预测

Real-Time Differential Epidemic Analysis and Prediction for COVID-19 Pandemic

论文作者

Tan, Sheldon X. D., Chen, Liang

论文摘要

在本文中,我们提出了一种新的实时差异病毒传播模型,该模型可以为COVID-19传播感染疾病提供更准确,更强大的短期预测,并具有近期趋势投影的好处。不同于现有的基于易感的受感染感染感染的(SEIR)病毒传播模型,该模型非常适合具有足够的历史数据的大流行模型,新模型也基于SEIR,它也是基于SEIR的新模型,它使用简短的历史数据来找到不断变化的感染,死者疾病动态的趋势,使死者和康复的疾病可以自然地适应疾病的实时行为,并实现了疾病的行为和社会行为,并具有疾病的行为,并进行了社会行为,并具有社会性的企业,并具有社交,并具有社交,并可以适应疾病的行为。由于改进的SEIR模型的参数经过短历史窗口数据的训练,以进行准确的趋势预测,因此我们的差异流行模型基本上是基于窗口的时变SEIR模型。由于SEIR模型仍然是一种基于物理的疾病传播模型,因此其近期(如一个月)的投影对于决策者来说仍然非常有助于指导他们对疾病缓解疾病和商业活动政策的决定的实时变化。如果大流行持续一年以上,世界各地的流感大流行等阶段都有不同的阶段,这一点尤其有用。已经分析了来自中国,意大利以及美国,加利福尼亚州和纽约州的COVID-19最近数据的数值结果。

In this paper, we propose a new real-time differential virus transmission model, which can give more accurate and robust short-term predictions of COVID-19 transmitted infectious disease with benefits of near-term trend projection. Different from the existing Susceptible-Exposed-Infected-Removed (SEIR) based virus transmission models, which fits well for pandemic modeling with sufficient historical data, the new model, which is also SEIR based, uses short history data to find the trend of the changing disease dynamics for the infected, the dead and the recovered so that it can naturally accommodate the adaptive real-time changes of disease mitigation, business activity and social behavior of populations. As the parameters of the improved SEIR models are trained by short history window data for accurate trend prediction, our differential epidemic model, essentially are window-based time-varying SEIR model. Since SEIR model still is a physics-based disease transmission model, its near-term (like one month) projection can still be very instrumental for policy makers to guide their decision for disease mitigation and business activity policy change in a real-time. This is especially useful if the pandemic lasts more than one year with different phases across the world like 1918 flu pandemic. Numerical results on the recent COVID-19 data from China, Italy and US, California and New York states have been analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源