论文标题

使用深度学习了解美学评估

Understanding Aesthetic Evaluation using Deep Learning

论文作者

McCormack, Jon, Lomas, Andy

论文摘要

任何进化艺术系统中的瓶颈都是美学评估。已经提出了许多不同的方法来自动化美学评估,包括对称性,连贯性,复杂性,对比度和分组的度量。交互式遗传算法(IGA)依赖于对美学的人类主观评估,但由于用户疲劳和较小的人口大小而限制了大量搜索的可能性。在本文中,我们研究了深度学习的最新进展如何有助于自动化个人审美判断。使用领先的艺术家的计算机艺术数据集,我们使用降低降低方法来可视化基因型和表型空间,以支持任何生成系统中对新区域的探索。对用户先前审美评估培训的卷积神经网络用于建议相似的新可能性或已知的高质量基因型 - 表型映射之间。

A bottleneck in any evolutionary art system is aesthetic evaluation. Many different methods have been proposed to automate the evaluation of aesthetics, including measures of symmetry, coherence, complexity, contrast and grouping. The interactive genetic algorithm (IGA) relies on human-in-the-loop, subjective evaluation of aesthetics, but limits possibilities for large search due to user fatigue and small population sizes. In this paper we look at how recent advances in deep learning can assist in automating personal aesthetic judgement. Using a leading artist's computer art dataset, we use dimensionality reduction methods to visualise both genotype and phenotype space in order to support the exploration of new territory in any generative system. Convolutional Neural Networks trained on the user's prior aesthetic evaluations are used to suggest new possibilities similar or between known high quality genotype-phenotype mappings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源