论文标题
量子应用的经典编码方法
Classical Coding Approaches to Quantum Applications
论文作者
论文摘要
量子信息科学努力利用我们宇宙的量子力学性质,以实现某些信息处理任务的大量改进。在深空光通信中,纯状态经典量子通道的当前接收器首先测量每个量子通道输出,然后在经典后进行测量。这种方法是最佳的。在本文中,我们研究了最近提出的此任务的量子算法,该算法的灵感来自经典的信仰传播算法,并在简单的$ 5 $ bit代码上分析其性能。我们证明该算法对于每个位都是最佳的,并且在确定完整传输消息时似乎可以实现最佳性能。我们还根据标准门提供了算法的明确电路。这表明,与上述亚最佳方案相比,近期的量子通信优势。 量子误差校正对于构建通用耐故障量子计算机至关重要。我们提出了一种有效的算法,该算法可以将稳定器代码上给定的逻辑Clifford操作转换为所有(等效类)物理Clifford电路的所有(等效类别),以意识到该操作。为了实现普遍性,人们还需要至少实施一个非克利福德逻辑操作。因此,我们为Clifford层次结构中的大部分对角线操作开发了一个数学框架,我们称之为二次形式对角线(QFD)门。然后,我们使用QFD形式主义来表征所有稳定器代码,其代码空间被保存在非clifford $ t $门的横向作用下。我们还讨论了一些由横向$ t $大门激发的纯粹经典的编码问题。通过在量子信息和计算上包括必要的背景材料,已经有意识地努力保持这项论文独立。
Quantum information science strives to leverage the quantum-mechanical nature of our universe in order to achieve large improvements in certain information processing tasks. In deep-space optical communications, current receivers for the pure-state classical-quantum channel first measure each qubit channel output and then classically post-process the measurements. This approach is sub-optimal. In this dissertation we investigate a recently proposed quantum algorithm for this task, which is inspired by classical belief-propagation algorithms, and analyze its performance on a simple $5$-bit code. We show that the algorithm is optimal for each bit and it appears to achieve optimal performance when deciding the full transmitted message. We also provide explicit circuits for the algorithm in terms of standard gates. This suggests a near-term quantum communication advantage over the aforementioned sub-optimal scheme. Quantum error correction is vital to building a universal fault-tolerant quantum computer. We propose an efficient algorithm that can translate a given logical Clifford operation on a stabilizer code into all (equivalence classes of) physical Clifford circuits that realize that operation. In order to achieve universality, one also needs to implement at least one non-Clifford logical operation. So, we develop a mathematical framework for a large subset of diagonal operations in the Clifford hierarchy, which we call Quadratic Form Diagonal (QFD) gates. Then we use the QFD formalism to characterize all stabilizer codes whose code spaces are preserved under the transversal action of the non-Clifford $T$ gates on the physical qubits. We also discuss a few purely-classical coding problems motivated by transversal $T$ gates. A conscious effort has been made to keep this dissertation self-contained, by including necessary background material on quantum information and computation.