论文标题
部分可观测时空混沌系统的无模型预测
Scalable Autonomous Vehicle Safety Validation through Dynamic Programming and Scene Decomposition
论文作者
论文摘要
自动驾驶中的一个开放问题是如何最好地使用模拟来验证自动驾驶汽车的安全性。现有技术依赖于模拟推出,这可能是无效寻找罕见故障事件的效率,而其他技术的设计仅是为了发现单个故障。在这项工作中,我们提出了一种新的安全验证方法,该方法试图使用近似动态编程来估计自主政策失败的分布。对此分布的了解可以有效发现许多故障示例。为了解决可伸缩性问题,我们将复杂的驾驶场景分解为仅由自我车辆和另一种车辆组成的子问题。可以通过近似动态编程来解决这些子问题,并重新组合它们的解决方案,以将解决方案近似于整个方案。我们将方法应用于简单的两辆车场景,以演示该技术以及更复杂的五车场景以证明可扩展性。在这两个实验中,我们都观察到与基线方法相比,发现的故障数量有所增加。
An open question in autonomous driving is how best to use simulation to validate the safety of autonomous vehicles. Existing techniques rely on simulated rollouts, which can be inefficient for finding rare failure events, while other techniques are designed to only discover a single failure. In this work, we present a new safety validation approach that attempts to estimate the distribution over failures of an autonomous policy using approximate dynamic programming. Knowledge of this distribution allows for the efficient discovery of many failure examples. To address the problem of scalability, we decompose complex driving scenarios into subproblems consisting of only the ego vehicle and one other vehicle. These subproblems can be solved with approximate dynamic programming and their solutions are recombined to approximate the solution to the full scenario. We apply our approach to a simple two-vehicle scenario to demonstrate the technique as well as a more complex five-vehicle scenario to demonstrate scalability. In both experiments, we observed an increase in the number of failures discovered compared to baseline approaches.