论文标题
基于同步加速器的孔网建模努比亚砂岩中的两相流及其对二氧化碳毛细管捕获的影响
Synchrotron-based pore-network modeling of two-phase flow in Nubian Sandstone and implications for capillary trapping of carbon dioxide
论文作者
论文摘要
苏伊士湾(埃及)中耗尽的油田可以用CO2-Plume Geotermal(CPG)系统充当发电的地热储层,而地质上是隔离的CO2。这需要将大量二氧化碳注入到高度渗透的盐水饱和的Nubian砂岩中。两相流程的数值模型是必不可少的,对于在代表性地质规模上预测CO2-Plume迁移。这样的模型需要可靠的构型关系,包括相对渗透性和毛细管压力曲线。在这项研究中,准静态孔网模型已用于模拟流体流体界面的平衡位置,从而确定毛细管压力和相对渗透率曲线。使用Synchrotron辐射X射线断层扫描显微镜获得了体素大小为0.65微米M3的三维图像。从图像中,构建了孔/喉咙的拓扑特性。使用孔网模型,我们进行了准静态侵入的顺序排水 - 基因侵入周期,以量化(1)(1)CO2和盐水相对渗透率曲线,(2)初始润湿相饱和度的效果滞后。结果提高了我们对努比亚砂岩中毛细管捕获的潜在幅度的理解,这对于将来的现场尺度模拟至关重要。此外,对毛细管捕获的二氧化碳存储容量的初始盆地规模评估在苏伊兹盆地的努比亚砂岩中产生了14-49 GTCO2的范围。
Depleted oil fields in the Gulf of Suez (Egypt) can serve as geothermal reservoirs for power generation using a CO2-Plume Geothermal (CPG) system, while geologically sequestering CO2. This entails the injection of a substantial amount of CO2 into the highly permeable brine-saturated Nubian Sandstone. Numerical models of two-phase flow processes are indispensable for predicting the CO2-plume migration at a representative geological scale. Such models require reliable constitutive relationships, including relative permeability and capillary pressure curves. In this study, quasi-static pore-network modelling has been used to simulate the equilibrium positions of fluid-fluid interfaces, and thus determine the capillary pressure and relative permeability curves. Three-dimensional images with a voxel size of 0.65 micro m3 of a Nubian Sandstone rock sample have been obtained using Synchrotron Radiation X-ray Tomographic Microscopy. From the images, topological properties of pores/throats were constructed. Using a pore-network model, we performed a sequential primary drainage-main imbibition cycle of quasi-static invasion in order to quantify (1) the CO2 and brine relative permeability curves, (2) the effect of initial wetting-phase saturation (i.e. the saturation at the point of reversal from drainage to imbibition) on the residual-trapping potential, and (3) study the relative permeability-saturation hysteresis. The results improve our understanding of the potential magnitude of capillary trapping in Nubian Sandstone, essential for future field-scale simulations. Further, an initial basin-scale assessment of CO2 storage capacity, which incorporates capillary trapping, yields a range of 14-49 GtCO2 in Nubian Sandstone, Gulf of Suez Basin.