论文标题

被监视的随机电路中的纠缠古典模型

Classical Models of Entanglement in Monitored Random Circuits

论文作者

Shtanko, Oles, Kharkov, Yaroslav A., García-Pintos, Luis Pedro, Gorshkov, Alexey V.

论文摘要

由HAAR随机门组成的量子电路中的纠缠熵的演变和投射测量的演变表明了多功能行为,并与相变和复杂性理论的联系。我们根据经典的马尔可夫进程重新制定了两人纯度动力学的经典过程,并建立了概率的细胞 - automaton算法,以计算在任意图上监视的随机电路中的纠缠熵。在一个维度中,我们将熵的演变与简单的经典自旋模型联系起来,该模型自然概括了二维晶格渗透问题。我们还建立了一个Markov模型,用于零元熵的演变,并证明,在一个维度和较大的局部维度的极限中,它与相应的第二雷尼 - entropy模型一致。最后,我们将马尔可夫描述扩展到更通用的环境,该设置结合了连续的时间动力学,该动力学由随机的哈密顿量和弱的局部测量持续监视系统。

The evolution of entanglement entropy in quantum circuits composed of Haar-random gates and projective measurements shows versatile behavior, with connections to phase transitions and complexity theory. We reformulate the problem in terms of a classical Markov process for the dynamics of bipartition purities and establish a probabilistic cellular-automaton algorithm to compute entanglement entropy in monitored random circuits on arbitrary graphs. In one dimension, we further relate the evolution of the entropy to a simple classical spin model that naturally generalizes a two-dimensional lattice percolation problem. We also establish a Markov model for the evolution of the zeroth Rényi entropy and demonstrate that, in one dimension and in the limit of large local dimension, it coincides with the corresponding second-Rényi-entropy model. Finally, we extend the Markovian description to a more general setting that incorporates continuous-time dynamics, defined by stochastic Hamiltonians and weak local measurements continuously monitoring the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源