论文标题

标准化高斯路径积分

Normalized Gaussian Path Integrals

论文作者

Corazza, Giulio, Fadel, Matteo

论文摘要

路径积分在描述经典或量子噪声的物理系统的动力学方面起着至关重要的作用。实际上,如果正确地归一化时,它们表达了系统两个状态之间过渡的可能性。在这项工作中,我们展示了一种一致的方法来解决条件和无条件的欧几里得(Wiener)高斯路径积分,该路径积分使我们能够从线性微分方程系统的解决方案中计算半经典近似中的过渡概率。我们的方法对于研究Fokker-Planck动力学以及类似弦乐对象(例如聚合物)的物理学特别有用。为了举一些例子,我们得出了d维鸟类 - 乌伦贝克过程的时间演变,以及由白噪声驱动的范德尔振荡器的时间演变。此外,当应用外场时,我们计算热平衡处带电串的端到端过渡概率。

Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show a consistent approach to solve conditional and unconditional Euclidean (Wiener) Gaussian path integrals that allow us to compute transition probabilities in the semi-classical approximation from the solutions of a system of linear differential equations. Our method is particularly useful for investigating Fokker-Planck dynamics, and the physics of string-like objects such as polymers. To give some examples, we derive the time evolution of the d-dimensional Ornstein-Uhlenbeck process, and of the Van der Pol oscillator driven by white noise. Moreover, we compute the end-to-end transition probability for a charged string at thermal equilibrium, when an external field is applied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源