论文标题
$ p $ - 波式费米斯的变化ansatz被限制在一维谐波陷阱中
Variational ansatz for $p$-wave fermions confined in a one-dimensional harmonic trap
论文作者
论文摘要
我们为$ p $波的基础状态提出了一个非常准确,有效的变化方案,可吸引人的相互作用的费米,限制在一维谐波陷阱中。通过构造,该方法将相互作用的非分析部分准确地考虑到了相互作用,因此非常准确地在整个相互作用范围内近似地面波函数。在该方法中,我们确定了系统的不同属性,用于不同数量的粒子和不同的相互作用。通过这种方式,我们探讨了系统及其特征如何从理想的非相互作用的费米气体转移到无限强大的吸引力系统。此外,我们证明了ANSATZ也可以在其他数值方法分解的相互作用的排斥分支上使用。提出的包括零范围相互作用的方法非常通用,并且可以很容易地将其推广到其他一维限制。
We propose a very accurate and efficient variational scheme for the ground state of the system of $p$-wave attractively interacting fermions confined in a one-dimensional harmonic trap. By the construction, the method takes the non-analytical part of interactions exactly into account and thus it approximates the true ground-state wave function in a whole range of interactions very accurately. Within the method, we determine different properties of the system for a different number of particles and different interactions. In this way, we explore how the system and its features transit from the ideal non-interacting Fermi gas to the system of infinitely strong attractions. Additionally, we demonstrate that the ansatz may also be used on a repulsive branch of interactions where other numerical methods break down. The presented method of including zero-range interactions is very universal and may be easily generalized to other one-dimensional confinements.