论文标题

分散的差异化私人分割用pate

Decentralized Differentially Private Segmentation with PATE

论文作者

Fay, Dominik, Sjölund, Jens, Oechtering, Tobias J.

论文摘要

在保存医疗机器学习中的隐私时,两个重要的考虑因素是(1)将数据保留到机构中,以及(2)避免从训练有素的模型中推断敏感信息。这些通常分别使用联邦学习和差异隐私来解决。但是,常用的联邦平均算法需要在参与机构之间高度同步。因此,我们将注意力转移到教师合奏(PATE)的私人聚合上,在那里所有本地模型都可以在没有机构间交流的情况下独立培训。因此,本文的目的是探讨Pate(最初是为分类设计的)如何最好地适应语义分割。为此,我们构建了细分面罩的低维表示,学生可以通过低敏性查询来获得私人聚合器。基于脑肿瘤分割(Brats 2019)数据集,基于自动编码器的PATE变体与基于联合平均的吵闹的嘈杂的工作相比,具有相同隐私保证的骰子系数更高。

When it comes to preserving privacy in medical machine learning, two important considerations are (1) keeping data local to the institution and (2) avoiding inference of sensitive information from the trained model. These are often addressed using federated learning and differential privacy, respectively. However, the commonly used Federated Averaging algorithm requires a high degree of synchronization between participating institutions. For this reason, we turn our attention to Private Aggregation of Teacher Ensembles (PATE), where all local models can be trained independently without inter-institutional communication. The purpose of this paper is thus to explore how PATE -- originally designed for classification -- can best be adapted for semantic segmentation. To this end, we build low-dimensional representations of segmentation masks which the student can obtain through low-sensitivity queries to the private aggregator. On the Brain Tumor Segmentation (BraTS 2019) dataset, an Autoencoder-based PATE variant achieves a higher Dice coefficient for the same privacy guarantee than prior work based on noisy Federated Averaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源