论文标题
riemann表面家族的自动形态的尼尔胸
Nilpotent groups of automorphisms of families of Riemann surfaces
论文作者
论文摘要
在本文中,我们扩展了Zomorrodian的结果,以确定一个nilpotent $ d $ d $维的nilpotent自动形态的上限。此外,对于一维情况,我们构建并描述了一个明确的家庭,该系列获得了无限多属的界限。我们为$ p $ - 群体的自动形态群体获得了类似的结果。
In this article we extend results of Zomorrodian to determine upper bounds for the order of a nilpotent group of automorphisms of a complex $d$-dimensional family of compact Riemann surfaces, where $d \geqslant 1.$ We provide conditions under which these bounds are sharp. In addition, for the one-dimensional case we construct and describe an explicit family attaining the bound for infinitely many genera. We obtain similar results for the case of $p$-groups of automorphisms.