论文标题

对称性可观察物的对称诱导的波动关系,无论其在时间倒流下的行为如何

Symmetry-induced fluctuation relations for dynamical observables irrespective of their behaviour under time-reversal

论文作者

Marcantoni, Stefano, Pérez-Espigares, Carlos, Garrahan, Juan P.

论文摘要

我们扩展了以前的工作来描述一类波动关系(FRS),这些波动关系是由于马尔可夫链中随机轨迹级别的对称性而出现的。我们证明,给定这样的对称性,对于适当的动力学可观察,始终有可能在与所谓的广义DOOB变换相对应的偏置动力学下获得FR。我们认为的动力学的一般变换超出了时间交流或空间等法,这意味着FRS的存在是对观察物的存在,无论其在时间逆转下,例如时间对称性观察值而不是电流,而不是时间。我们进一步展示了如何从动力学发电机的对称属性中长期限制这些FRS的时间。我们用四个示例来说明我们的结果,这些例子突出了我们作品的新颖特征。

We extend previous work to describe a class of fluctuation relations (FRs) that emerge as a consequence of symmetries at the level of stochastic trajectories in Markov chains. We prove that given such a symmetry, and for a suitable dynamical observable, it is always possible to obtain a FR under a biased dynamics corresponding to the so-called generalized Doob transform. The general transformations of the dynamics that we consider go beyond time-reversal or spatial isometries, and an implication is the existence of FRs for observables irrespective of their behaviour under time-reversal, for example for time-symmetric observables rather than currents. We further show how to deduce in the long-time limit these FRs from the symmetry properties of the generator of the dynamics. We illustrate our results with four examples that highlight the novel features of our work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源