论文标题
Bogoliubov-de Gennes在更高维度的灰色孤子“蛇”不稳定性的理论
Bogoliubov-de Gennes theory of the "snake" instability of gray solitons in higher dimensions
论文作者
论文摘要
灰色孤子是一种具有积极立方非线性的一维非线性schrödinger方程(NLSE)的单参数溶液家族,如在Gross-Pitaevskii sheody prodime shove-pitibuiides中所描述的可见频谱中,在可见的稀释型稀释的Bose-Einstein冷凝物或电磁波中所发现的那样。在二维中,这些对NLSE的解决方案显示为抑郁凝结物密度或光强度的线或平面,但是数值解决方案表明,该线在“窃听”上动态不稳定:最初的直线或强度最小起伏的直线,并具有呈梯度增长的幅度。为了帮助对量子机械不稳定性的未来研究以外的平均野外理论,我们在这里对Bogoliubov-De Gennes扰动理论中的蛇不稳定性进行了近似的分析描述。在此线性近似中,二维结果也适用于三个维度,描述了低密度平面的屈曲模式。我们扩展了Kuznetsov和Turitsyn的分析结果[SOV。物理。 Jetp \ textbf {67},1583(1988)]以较短的“蛇”调制的波长,并显示蛇模式在多大程度上可以准确地描述为参数不稳定性,其中初始孔的位置和灰度参数只是对横向尺寸的依赖(s)。我们发现,如果Snaking Soliton还穿着外向传播的声波,那么参数图片在蛇浪潮号中仍保持准确,但在Snaking Wave数字中,参数描述破裂了。
Gray solitons are a one-parameter family of solutions to the one-dimensional non-linear Schrödinger equation (NLSE) with positive cubic nonlinearity, as found in repulsively interacting dilute Bose-Einstein condensates or electromagnetic waves in the visible spectrum in waveguides described by Gross-Pitaevskii mean field theory. In two dimensions these solutions to the NLSE appear as a line or plane of depressed condensate density or light intensity, but numerical solutions show that this line is dynamically unstable to `snaking': the initially straight line of density or intensity minimum undulates with exponentially growing amplitude. To assist future studies of quantum mechanical instability beyond mean field theory, we here pursue an approximate analytical description of the snake instability within Bogoliubov-de Gennes perturbation theory. Within this linear approximation the two-dimensional result applies trivially to three dimensions as well, describing buckling modes of the low-density plane. We extend the analytical results of Kuznetsov and Turitsyn [Sov. Phys. JETP \textbf{67}, 1583 (1988)] to shorter wavelengths of the `snake' modulation and show to what extent the snake mode can be described accurately as a parametric instability, in which the position and grayness parameter of the initial soliton simply become dependent on the transverse dimension(s). We find that the parametric picture remains accurate up to second order in the snaking wave number, if the snaking soliton is also dressed by an outward-propagating sound wave, but that beyond second order in the snaking wave number the parametric description breaks down.