论文标题
一个简单的随机$ O(n \ log n)$ - Time time time time time time timpiair算法倍增指标
A Simple Randomized $O(n \log n)$--Time Closest-Pair Algorithm in Doubling Metrics
论文作者
论文摘要
考虑一个度量空间$(p,dist)$,其中$ n $点的加倍尺寸是恒定的。我们提出了一种简单,随机和递归的算法,该算法在$ o(n \ log n)$预期时间中计算,这是$ p $的最接近的距离。为了生成递归调用,我们使用了竖琴和门德尔的先前结果,并使用ac bam和har-peled进行计算以平衡方式分开点的稀疏环。
Consider a metric space $(P,dist)$ with $N$ points whose doubling dimension is a constant. We present a simple, randomized, and recursive algorithm that computes, in $O(N \log N)$ expected time, the closest-pair distance in $P$. To generate recursive calls, we use previous results of Har-Peled and Mendel, and Abam and Har-Peled for computing a sparse annulus that separates the points in a balanced way.