论文标题

从机器阅读理解到对话状态跟踪:弥合差距

From Machine Reading Comprehension to Dialogue State Tracking: Bridging the Gap

论文作者

Gao, Shuyang, Agarwal, Sanchit, Chung, Tagyoung, Jin, Di, Hakkani-Tur, Dilek

论文摘要

对话状态跟踪(DST)是面向任务的对话系统的核心。但是,标记数据的稀缺性是构建跨各种域名的准确稳健状态跟踪系统的障碍。现有的方法通常需要一些对话数据,并具有状态信息,并且它们将其推广到未知域的能力是有限的。在本文中,我们提出了从两个角度使用机器阅读理解(RC)在状态跟踪中:模型体系结构和数据集。我们将对话状态中的插槽类型分为分类或提取性,以借用多选择和基于跨度的阅读理解模型的优势。我们的方法在多维2.1的联合目标准确性中获得了当前最新目标的实现,给出了完整的培训数据。更重要的是,通过利用机器读取理解数据集,我们的方法在几乎没有射击方案的情况下,在几乎没有的情况下,我们的方法的表现要优于现有方法。最后,即使没有任何状态跟踪数据,即零射击方案,我们提出的方法在Multiwoz 2.1中的30个插槽中有12个插槽中的12个插槽的平均插槽准确度超过90%。

Dialogue state tracking (DST) is at the heart of task-oriented dialogue systems. However, the scarcity of labeled data is an obstacle to building accurate and robust state tracking systems that work across a variety of domains. Existing approaches generally require some dialogue data with state information and their ability to generalize to unknown domains is limited. In this paper, we propose using machine reading comprehension (RC) in state tracking from two perspectives: model architectures and datasets. We divide the slot types in dialogue state into categorical or extractive to borrow the advantages from both multiple-choice and span-based reading comprehension models. Our method achieves near the current state-of-the-art in joint goal accuracy on MultiWOZ 2.1 given full training data. More importantly, by leveraging machine reading comprehension datasets, our method outperforms the existing approaches by many a large margin in few-shot scenarios when the availability of in-domain data is limited. Lastly, even without any state tracking data, i.e., zero-shot scenario, our proposed approach achieves greater than 90% average slot accuracy in 12 out of 30 slots in MultiWOZ 2.1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源