论文标题
孵化期流行病的简单统计物理模型
A simple statistical physics model for the epidemic with incubation period
论文作者
论文摘要
基于经典的SIR模型,我们为具有已知感染的孵育时期的流行病动力学得出了简单的修改。该模型由一个差异方程的系统描述。我们模型的参数与流行病学数据直接相关。我们得出了一些分析结果,并执行数值模拟。我们使用所提出的模型分析亚美尼亚的Covid-19-19。我们提出了一种策略:组织一个隔离区,然后在隔离期间对风险群体进行广泛的测试,评估风险群体和症状患者之间人口百分比。
Based on the classical SIR model, we derive a simple modification for the dynamics of epidemics with a known incubation period of infection. The model is described by a system of integro-differential equations. Parameters of our model directly related to epidemiological data. We derive some analytical results, as well as perform numerical simulations. We use the proposed model to analyze COVID-19 epidemic data in Armenia. We propose a strategy: organize a quarantine, and then conduct extensive testing of risk groups during the quarantine, evaluating the percentage of the population among risk groups and people with symptoms.