论文标题

FBNETV2:可区分的神经体系结构搜索空间和通道维度

FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions

论文作者

Wan, Alvin, Dai, Xiaoliang, Zhang, Peizhao, He, Zijian, Tian, Yuandong, Xie, Saining, Wu, Bichen, Yu, Matthew, Xu, Tao, Chen, Kan, Vajda, Peter, Gonzalez, Joseph E.

论文摘要

可区分的神经体系结构搜索(DNA)在设计最先进的,有效的神经网络方面取得了巨大的成功。但是,与其他搜索方法相比,基于飞镖的DNA的搜索空间很小,因为所有候选网络层都必须在内存中明确实例化。为了解决此瓶颈,我们提出了一个内存和计算有效的DNA变体:DMASKINGNAS。该算法将搜索空间扩展到$ 10^{14} \ times $上,而不是常规DNA,支持对空间和通道尺寸的搜索,这些搜索本来是昂贵的:输入分辨率和过滤器数量。我们提出了一种用于功能地图重复使用的掩蔽机制,以便随着搜索空间的扩展,内存和计算成本几乎保持恒定。此外,我们采用有效的形状传播来最大程度地提高每参数的准确性。与所有以前的架构相比,搜索的FBNETV2S产生最先进的性能。 Dmaskingnas的搜索成本最高为421 $ \ times $ $ \ times $,其精度高0.9%,拖失lop比Mobilenetv3-small少15%;并且准确性相似,但比有效B0少20%。此外,我们的FBNETV2的准确性优于MobilenetV3,具有同等的模型大小。 FBNETV2型号在https://github.com/facebookresearch/mobile-vision上开源。

Differentiable Neural Architecture Search (DNAS) has demonstrated great success in designing state-of-the-art, efficient neural networks. However, DARTS-based DNAS's search space is small when compared to other search methods', since all candidate network layers must be explicitly instantiated in memory. To address this bottleneck, we propose a memory and computationally efficient DNAS variant: DMaskingNAS. This algorithm expands the search space by up to $10^{14}\times$ over conventional DNAS, supporting searches over spatial and channel dimensions that are otherwise prohibitively expensive: input resolution and number of filters. We propose a masking mechanism for feature map reuse, so that memory and computational costs stay nearly constant as the search space expands. Furthermore, we employ effective shape propagation to maximize per-FLOP or per-parameter accuracy. The searched FBNetV2s yield state-of-the-art performance when compared with all previous architectures. With up to 421$\times$ less search cost, DMaskingNAS finds models with 0.9% higher accuracy, 15% fewer FLOPs than MobileNetV3-Small; and with similar accuracy but 20% fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2 outperforms MobileNetV3 by 2.6% in accuracy, with equivalent model size. FBNetV2 models are open-sourced at https://github.com/facebookresearch/mobile-vision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源