论文标题
关于通过删除$ \ ell $ VERTICES获得的子图的多音图重建图
On reconstruction of graphs from the multiset of subgraphs obtained by deleting $\ell$ vertices
论文作者
论文摘要
ULAM的重建猜想断言,对于$ n \ geq 3 $,每个$ n $ vertex图由其诱导子图的多键确定,并带有$ n-1 $ dertices。众所周知,该猜想可用于各种特殊类别的图表,但仍然张开。我们调查了凯利(Kelly)从1957年提出的更一般猜想的结果,即对于每个正整数$ \ ell $ $ $ \ ell $(带有$ m_1 = 3 $),因此,当$ n \ geq m_ \ ell $每$ n $ n $ vertex Graph由$ n \ n-el $ n-el $ n-el el el el el el el e el el e el e el e el e e e el $ n $ n $ n $ vertex Graph确定时。
The Reconstruction Conjecture of Ulam asserts that, for $n\geq 3$, every $n$-vertex graph is determined by the multiset of its induced subgraphs with $n-1$ vertices. The conjecture is known to hold for various special classes of graphs but remains wide open. We survey results on the more general conjecture by Kelly from 1957 that for every positive integer $\ell$ there exists $M_\ell$ (with $M_1=3$) such that when $n\geq M_\ell$ every $n$-vertex graph is determined by the multiset of its induced subgraphs with $n-\ell$ vertices.