论文标题
非线性摩尔斯 - 摩特在Quaternionic Stiefel歧管上起作用
Non-linear Morse-Bott functions on quaternionic Stiefel manifolds
论文作者
论文摘要
在stiefel歧管$ x_ {n,k} $中,我们将弗兰克尔线性高度函数替换为二次函数。我们证明这仍然是莫尔斯 - 摩特的功能,其临界水平的结构根据$ n-2k $的迹象呈现二分法。关键的子手机不再是司芒氏菌,而是两种草个者的基础振动空间。我们明确整合了梯度流。
In the Stiefel manifold $X_{n,k}$, we replace Frankel linear height function by a quadratic one. We prove this is still a Morse-Bott function, whose structure of critical levels presents a dichotomy according to the sign of $n-2k$. The critical submanifolds are no longer Grassmannians but total spaces of fibrations of basis a product of two Grassmannians. We explicitly integrate the gradient flow.