论文标题

贝叶斯的收缩朝向尖锐的最小值

Bayesian Shrinkage towards Sharp Minimaxity

论文作者

Song, Qifan

论文摘要

由于其计算效率,Hearminkage Prior在贝叶斯建模中越来越受欢迎。最近的作品表明,在回归模型下,多项式衰减的先验导致后渐近肌。在文献中,统计学家调查了全球收缩参数(即刻度参数)如何在较重的尾部先验中影响后部收缩。在这项工作中,我们探讨了先前或更具体地说,先前尾巴的多项式顺序如何影响后部。我们发现,在稀疏的正常平均值模型下,多项式秩序确实会影响后置收缩率的乘法常数。更重要的是,如果多项式秩序足够接近1,则它将引起最佳的贝叶斯后趋同,从某种意义上说,贝叶斯收缩率急剧很小,即不仅是阶,而且后后收缩率的多重常数是最佳的。当全球收缩参数遵循确定性的选择,取决于未知的稀疏性$ s $时,上面的贝叶斯尖锐最小值就会达到。因此,进一步提出了Beta-prior建模,以便我们的最小贝叶斯程序适应未知的$ S $。我们的理论发现是通过模拟研究证明的。

Shrinkage prior are becoming more and more popular in Bayesian modeling for high dimensional sparse problems due to its computational efficiency. Recent works show that a polynomially decaying prior leads to satisfactory posterior asymptotics under regression models. In the literature, statisticians have investigated how the global shrinkage parameter, i.e., the scale parameter, in a heavy tail prior affects the posterior contraction. In this work, we explore how the shape of the prior, or more specifically, the polynomial order of the prior tail affects the posterior. We discover that, under the sparse normal means models, the polynomial order does affect the multiplicative constant of the posterior contraction rate. More importantly, if the polynomial order is sufficiently close to 1, it will induce the optimal Bayesian posterior convergence, in the sense that the Bayesian contraction rate is sharply minimax, i.e., not only the order, but also the multiplicative constant of the posterior contraction rate are optimal. The above Bayesian sharp minimaxity holds when the global shrinkage parameter follows a deterministic choice which depends on the unknown sparsity $s$. Therefore, a Beta-prior modeling is further proposed, such that our sharply minimax Bayesian procedure is adaptive to unknown $s$. Our theoretical discoveries are justified by simulation studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源