论文标题

使用四边形和对称属性的面向对象的大满贯室内环境

Object-oriented SLAM using Quadrics and Symmetry Properties for Indoor Environments

论文作者

Liao, Ziwei, Wang, Wei, Qi, Xianyu, Zhang, Xiaoyu, Xue, Lin, Jiao, Jianzhen, Wei, Ran

论文摘要

针对室内移动机器人的应用环境,本文提出了基于RGB-D摄像机的稀疏对象级别的算法。二次表示被用作地标,以压制对象建模,包括其位置,方向和被占用的空间。基于最先进的二次SLAM算法面临着由移动机器人的平面轨迹下的有限视角引起的可观察性问题。为了解决该问题,提出的算法融合了对象检测和点云数据以估计二次参数。它根据RGB-D数据的单一框架完成了二次初始化,这大大降低了透视变化的要求。由于经常在本地观察到对象,因此所提出的算法使用室内人造物体的对称特性来估计被遮挡的部分以获得更准确的四边形参数。实验表明,与最先进的算法相比,尤其是在移动机器人的正向轨迹上,提出的算法显着提高了二次重建的准确性和收敛速度。最后,我们提供了开放源实现,以复制实验。

Aiming at the application environment of indoor mobile robots, this paper proposes a sparse object-level SLAM algorithm based on an RGB-D camera. A quadric representation is used as a landmark to compactly model objects, including their position, orientation, and occupied space. The state-of-art quadric-based SLAM algorithm faces the observability problem caused by the limited perspective under the plane trajectory of the mobile robot. To solve the problem, the proposed algorithm fuses both object detection and point cloud data to estimate the quadric parameters. It finishes the quadric initialization based on a single frame of RGB-D data, which significantly reduces the requirements for perspective changes. As objects are often observed locally, the proposed algorithm uses the symmetrical properties of indoor artificial objects to estimate the occluded parts to obtain more accurate quadric parameters. Experiments have shown that compared with the state-of-art algorithm, especially on the forward trajectory of mobile robots, the proposed algorithm significantly improves the accuracy and convergence speed of quadric reconstruction. Finally, we made available an opensource implementation to replicate the experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源