论文标题
丽兹值在正常矩阵的数值范围内的位置
Location of Ritz values in the numerical range of normal matrices
论文作者
论文摘要
令$μ_1$为普通矩阵$ a $的数值范围$ w(a)$中的一个复杂数字。在$ w(a)$的内部不存在$ a $的特征值时,我们确定最小的凸区域,其中包含所有可能的复数$μ_2$,$ \ begin $ \ begin {bmatrix}μ_1& *\ \\ \\ \\ 0&μ_2&μ_2\ end end end end {bmatrix}
Let $μ_1$ be a complex number in the numerical range $W(A)$ of a normal matrix $A$. In the case when no eigenvalues of $A$ lie in the interior of $W(A)$, we identify the smallest convex region containing all possible complex numbers $μ_2$ for which $\begin{bmatrix}μ_1& *\\0& μ_2\end{bmatrix}$ is a $2$-by-$2$ compression of $A$.