论文标题

基质值数据的协方差估计

Covariance Estimation for Matrix-valued Data

论文作者

Zhang, Yichi, Shen, Weining, Kong, Dehan

论文摘要

矩阵值数据的协方差估计已对应用程序产生越来越多的兴趣。与以前在很大程度上依赖于矩阵正态分布假设和固定基质大小的要求的作品不同,我们提出了一类无分配的正则协方差估计方法,用于在可分离性条件下和可束缚的协方差结构下进行高维矩阵数据。在这些条件下,原始协方差矩阵分解为两个可绑定的小协方差矩阵的Kronecker产品,代表了行和列方向的可变性。我们制定了一个统一的框架来估计可束缚协方差,并基于等级的一个不受约束的Kronecker产品近似引入有效的算法。建立了所提出的估计量的收敛速率,而衍生的最小值下限显示我们所提出的估计量在矩阵大小的某些差异状态下的速率最佳。我们进一步介绍了一类强大的协方差估计器,并提供了理论保证来处理重型数据。我们使用网格温度异常数据集和标准普尔500库存数据分析的模拟和实际应用来证明我们方法的出色样本性能。

Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源