论文标题

毕达哥拉斯在表面上的概括

A generalization of Pythagoras on a surface

论文作者

Zachos, Anastasios

论文摘要

我们分析了托普诺戈夫的正弦定理,以在c^2常规表面M上使用无限的地理三角形ABC,这在他的书中给出了[6,问题3.7.2],我们在M. c = \fracπ{2 pers of per n of per of per n of per n of in of py n of py n of Aciags obc on abc上的概括性提供了综合的概括。 = ab^2 + bc^2 + f(\角a,\fracπ{2},ab,bc)o(ac^2)或ac^2 = ab^2 + bc^2 +(\ angle a + \ angle a + \ angle c- \fracπ{2})其中f(\ anger a,b,b,ab bc bc)是a r rations a r rations a r rations a r rations w n f(\ angle a,begne去科萨; Cosb,Sina,Sinb,AB和BC。

We analyze Toponogov's sine theorem for an infinitesimal geodesic triangle ABC on a C^2 regular surface M, which is given in his book [6, Problem 3.7.2] and we provide a generalization of the law of cosines for ABC on M. By replacing in the law of cosines B=\fracπ{2} on M, we derive the generalized theorem of Pythagoras on a surface: AC^2 = AB^2 + BC^2 + f(\angle A,\fracπ{2},AB,BC)o(AC^2) or AC^2 = AB^2 + BC^2 + (\angle A + \angle C-\fracπ{2})^2 where f(\angle A,\angle B,AB,BC) is a rational function w.r. to cosA; cosB, sinA, sinB, AB and BC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源