论文标题
自然通货膨胀率具有自然数量的电子折叠
Natural inflation with natural number of e-foldings
论文作者
论文摘要
我们通过考虑物理e-folds $ \ ln(a_eh_e/ah)$的数量来检查自然通货膨胀,而无需使用标准的慢速近似。我们表明,$ \ tilde {h} = ah \ propto \ cos(a ϕ/2)^{2/a^2} \ sin(a ϕ/2)$ $会产生自然通货膨胀方案。该模型可以准确地解决,表明慢速近似将张量比比率高于$ 13-19 \%$,对于$ n_s \约0.96 $和$ 50-60 $ $ $ e $ folds。
We examine natural inflation without the use of the standard slow-roll approximation by considering the number of physical e-folds $\ln (a_eH_e/aH)$. We show that $\tilde{H} = aH \propto \cos(A ϕ/2)^{2/A^2} \sin(A ϕ/2)$ produces a natural inflationary scenario. This model may be solved exactly, showing that the slow-roll approximation overestimates the tensor-to-scalar ratio by about $13-19 \%$ for $n_s \approx 0.96$ and $50-60$ $e$-folds.