论文标题

端到端学习改善了单眼视频中的静态对象地理位置化

End-to-end Learning Improves Static Object Geo-localization in Monocular Video

论文作者

Chaabane, Mohamed, Gueguen, Lionel, Trabelsi, Ameni, Beveridge, Ross, O'Hara, Stephen

论文摘要

从自动驾驶汽车的移动相机中准确估算静态物体的位置,例如交通信号灯,这是一个挑战性的问题。在这项工作中,我们提出了一个系统,该系统通过通过学习共同使系统组件共同优化静态对象的定位。我们的系统由执行的网络组成:1)从单个图像中估算5DOF对象姿势,2)对象之间的对象关联和3)多对象跟踪,以产生场景中静态对象的最终地理位置定位。我们使用公开可用的数据集评估了我们的方法,该数据集的重点是数据可用性。对于每个组件,我们将与当代替代方案进行比较,并表现出明显改善的性能。我们还表明,端到端系统性能通过组成模型的联合培训进一步提高。

Accurately estimating the position of static objects, such as traffic lights, from the moving camera of a self-driving car is a challenging problem. In this work, we present a system that improves the localization of static objects by jointly-optimizing the components of the system via learning. Our system is comprised of networks that perform: 1) 5DoF object pose estimation from a single image, 2) association of objects between pairs of frames, and 3) multi-object tracking to produce the final geo-localization of the static objects within the scene. We evaluate our approach using a publicly-available data set, focusing on traffic lights due to data availability. For each component, we compare against contemporary alternatives and show significantly-improved performance. We also show that the end-to-end system performance is further improved via joint-training of the constituent models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源